Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Article in English | IMSEAR | ID: sea-135690

ABSTRACT

Background & objectives In drug resistant, especially multi-drug resistant (MDR) tuberculosis, fluoroquinolones (FQs) are used as second line drugs. However, the incidence of FQ-resistant Mycobacterium tuberculosis is rapidly increasing which may be due to extensive use of FQs in the treatment of various other diseases. The most important known mechanism i.e., gyrA mutation in FQ resistance is not observed in a significant proportion of FQ resistant M. tuberculosis isolates suggesting that the resistance may be because of other mechanisms such as an active drug efflux pump. In this study we evaluated the role of the efflux pumps in quinolone resistance by using various inhibitors such as carbonyl cyanide m-chlorophenyl hydrazone (CCCP), 2,4-dinitrophenol (DNP) and verapamil, in clinical isolates of M. tuberculosis. Methods A total of 55 M. tuberculosis clinical isolates [45 ofloxacin (OFL) resistant and 10 ofloxacin sensitive] were tested by Resazurin microtitre assay (REMA) to observe the changes in ofloxacin minimum inhibitory concentration (MIC) levels in presence of efflux inhibitors as compared to control (without efflux inhibitor). Results The MIC levels of OFL showed 2-8 folds reduction in presence of CCCP (16/45; 35.5%), verapamil (24/45; 53.3%) and DNP (21/45; 46.6%) while in case of isolates identified as OFL sensitive these did not show any effect on ofloxacin MICs. In 11 of 45 (24.5%) isolates change in MIC levels was observed with all the three inhibitors. Overall 30 (66.6%) isolates had reduction in OFL MIC after treatment with these inhibitors. A total of eight isolates were sequenced for gyrA gene, of which, seven (87.5%) showed known mutations. Of the eight sequenced isolates, seven (87.5%) showed 2 to 8 fold change in MIC in presence of efflux inhibitors. Interpretation & conclusions Our findings suggest the involvement of active efflux pumps of both Major Facilitator Super Family (MFS) family (inhibited by CCCP and DNP) and ATP Binding Cassette (ABC) transporters (inhibited by verapamil) in the development of OFL resistance in M. tuberculosis isolates. Epidemiological significance of these findings needs to be determined in prospective studies with appropriate number of samples / isolates.


Subject(s)
2,4-Dinitrophenol/pharmacology , ATP-Binding Cassette Transporters/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Base Sequence , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Computational Biology , DNA Gyrase/genetics , DNA Primers/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Molecular Sequence Data , Mutation/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Ofloxacin/pharmacology , Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Verapamil/pharmacology
2.
Article in English | IMSEAR | ID: sea-135823

ABSTRACT

Background & objectives: Fluoroquinolones (FQs) are important drugs used for treatment of drug resistant tuberculosis and are also now being considered as fi rst line drugs to shorten the duration of treatment of tuberculosis (TB). In order to fi nd out useful FQs for treatment of tuberculosis, the comparative effi cacy of fi ve FQs, namely, ofl oxacin (OFL), ciprofl oxacin (CIP), sparfl oxacin (SPX), gatifl oxacin (GAT) and levofl oxacin (LEVX) was studied against Mycobacterium tuberculosis (MTB) isolates obtained from both treated and untreated patients from Agra and Kanpur regions of north India. Methods: A total of 162 MTB isolates [including 110 MTB isolates obtained from untreated patients (Cat-I) and 52 isolates from treated patients (Cat-II)] were tested for their susceptibilities to FQs using standard minimum inhibitory concentration (MIC) method on Löwenstein-Jensen medium. Results: Keeping in view the therapeutically achievable drug levels, it was found that in Cat-I 97.2 per cent (107/110) isolates were sensitive to GAT, 89 per cent (98/110) to LEVX at 1 μg/ml whereas 92.7 per cent (102/110) isolates were inhibited by OFL at 2 μg/ml and 73.6 per cent (81/110) to SPX at 0.5 μg/ml. Only 63.6 per cent (70/110) isolates were found to be sensitive to CIP at 2 μg/ml which increased to 89 per cent (98/110) at 4 μg/ml (higher than achievable peak serum level). On the other hand, among 52 isolates for Cat-II, 37 (71.2%) were found to be sensitive to GAT and 33 (63.5%) to LEVX at 1 μg/ml concentration, 28 (53.8%) to SPX at 0.5 μg/ml whereas 33 (63.5%) and 24 (46.2%) isolates were found to be sensitive to OFL and CIP at 2 μg/ml, respectively. Interpretation & conclusions: It appears that GAT has higher activity against MTB isolates followed by OFL, LEVX and SPX whereas CIP showed the lowest activity. GAT was also found to be the most effective FQ against multi-drug resistant (MDR) isolates both from Cat-I and Cat-II patients. Thus, except CIP, other FQs showed potential to be included in the treatment regimens of tuberculosis including MDR-TB.


Subject(s)
Drug Discovery/methods , Fluoroquinolones/pharmacology , Humans , India , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy
3.
Article in English | IMSEAR | ID: sea-112318

ABSTRACT

Bovine tuberculosis caused by the bacterium Mycobacterium bovis is a major infectious disease of animals and has zoonotic importance for humans. Even though the incidence is believed to be very low in India, human tuberculosis caused by M. bovis has been increasingly recognized in many other countries of the world. As differentiation of mycobacterial species take long time, a method for the rapid identification of mycobacteria isolated from bovine samples to the species level was used, which is based on polymerase chain reaction (PCR) of the gene encoding for the 65-kD protein followed by restriction analysis. The method involves restriction enzyme analysis of PCR products obtained with primers common to all mycobacteria and generate M. tuberculosis complex specific pattern. PRA was performed on 33 bovine isolates of which 90.9% (30/33) isolates were identified clearly as M. tuberculosis complex, M. fortuitum, M. phlei and M. smegmatis using restriction enzyme Hae III.


Subject(s)
Animals , Bacterial Proteins/classification , Cattle , Chaperonins/classification , DNA, Bacterial/analysis , Nontuberculous Mycobacteria/classification , Mycobacterium phlei/classification , Mycobacterium tuberculosis/classification , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Tuberculosis, Bovine/classification
SELECTION OF CITATIONS
SEARCH DETAIL